Методика тестирования 

Методика тестирования акустических систем

версия для печати послать другу 0
|| Содержание статьи

Показать одной страницей

26.07.2007 00:05 Автор: Василий Запотылок

Мы продолжаем нашу традицию, и публикуем очередную статью из серии "методика тестирования". Подобные статьи служат как общетеоретическим базисом, помогающим читателям получить введение в тему, так и конкретным руководством по интерпретации результатов тестов, полученных в нашей лаборатории. Сегодняшняя статья по методике будет несколько необычной – мы решили посвятить значительную ее часть теории звука и акустических систем. Зачем это нужно? Дело в том, что звук и акустика – практически самая сложная из всех освещаемых нашим ресурсом тематик. И, пожалуй, среднестатистический читатель подкован в этой области меньше, чем, скажем, в оценке разгонного потенциала различных степпингов Core 2 Duo. Мы рассчитываем, что справочные материалы, которые легли в основу статьи, а также непосредственное описание методики измерения и тестирования позволят заполнить некоторые пробелы в знаниях всех любителей хорошего звука. Итак, начнем с основных терминов и понятий, которые обязан знать любой начинающий аудиофил.  

Основные термины и понятия 

Небольшое введение в музыку 

Начнем оригинально: с начала. С того, что звучит через колонки, и о прочих наушниках. Так уж повелось, что среднестатистическое человечье ухо различает сигналы  в диапазоне от 20 до 20 000 Гц (или 20 кГц). Этот довольно солидный диапазон в свою очередь делится обычно на 10 октав (можно поделить на любое другое количество, но принято именно 10). 

В общем случае октава – это диапазон частот, границы которого вычисляются  удвоением или ополовиниванием частоты. Нижняя граница последующей октавы получается удвоением нижней границы предыдущей октавы. Кто знаком с булевой алгеброй, то тому этот ряд покажется странно знакомым. Степени двойки с дописанным нулем в конце в чистом виде. Собственно, зачем нужно знание октав? Оно необходимо для того, чтобы прекратить путаницу в том, что надо называть нижним, средним или еще каким басом и тому подобное. Общепринятый набор октав однозначно определяет, кто есть кто с точностью до герца.

Номер октавы

Нижняя граница, Гц

Верхняя граница, Гц

Название

Название 2

1

20

40

Глубокий бас

 

2

40

80

Средний бас

Субконтр

3

80

160

Верхний бас

Контр

4

160

320

Нижняя середина

Большая

5

320

640

Собственно середина

Малая

6

640

1280

Верхняя середина

1-я

7

1280

2560

Нижний верх

2-я

8

2560

5120

Средний верх

3-я

9

5120

10240

Верхние высокие

4-я

10

10240

20480

Верхняя октава

5-я

 

20480

26579.5

 

6-я

Последняя строка не нумерована. Это связано с тем, что в стандартную десятку октав она не входит. Обратите внимание на столбец "Название 2". Здесь содержатся названия октав, которые выделяются музыкантами. У этих "странных" людей нет понятия глубокого баса, зато есть одна октава сверху - от 20480 Гц. Поэтому такое расхождение в нумерации и названиях. 

Теперь можно говорить более предметно о частотном диапазоне акустических систем. Следует начать с неприятной новости: глубокого баса в мультимедийной акустике нет. 20 Гц подавляющее большинство любителей музыки на уровне -3 дБ попросту никогда не слышало. А теперь новость приятная и неожиданная. В реальном сигнале таких частот тоже нет (за некоторым исключением, естественно). Исключением является, например, запись с судейского диска IASCA Competition. Песенка называется "The Viking". Там даже 10 Гц записаны с приличной амплитудой. Этот трек записывали в специальном помещении на огромном органе. Систему, которая отыграет "Викингов", судьи увешают наградами, как новогоднюю елку игрушками. А с реальным сигналом все проще: басовый барабан – от 40 Гц. Здоровенные китайские барабаны – тоже от 40 Гц (есть там среди них, правда, один мегабарабан. Так он аж от 30 Гц начинает играть). Живой контрабас – вообще от 60 Гц. Как можно заметить, 20 Гц здесь не упоминаются. Поэтому можно не расстраиваться по поводу отсутствия настолько низких составляющих. Они для прослушивания реальной музыки не нужны. 

На рисунке представлена спектрограмма. На ней две кривые: фиолетовая DIN  и зеленая (от старости) IEC. Эти кривые отображают распределение по спектру среднего музыкального сигнала. Характеристика IEC применялась до 60-х годов 20-го века. В те времена предпочитали не издеваться над пищалкой. А после 60-х эксперты обратили внимание на то, что предпочтения слушателей и музыка несколько поменялись. Это отразилось в стандарте великого и могучего DIN. Как видно, высоких частот стало гораздо больше. Но баса не прибавилось. Вывод: не нужно гоняться за супербасистыми системами. Тем более что желанных 20 Гц там все равно не положили в коробку.  

Характеристики акустических систем 

Теперь, зная азбуку октав и музыки, можно приступить к пониманию АЧХ. АЧХ (амплитудно-частотная характеристика) – зависимость амплитуды колебания на выходе устройства от частоты входного гармонического сигнала. То есть системе подают на вход сигнал, уровень которого принимается за 0 дБ. Из этого сигнала колонки с усилительным трактом делают, что могут. Получается у них обычно не прямая на 0 дБ, а некоторым образом изломанная линия. Самое интересное, кстати, заключается в том, что все (от аудиолюбителей до аудиопроизводителей) стремятся к идеально ровной АЧХ, но "пристремиться" боятся.  

Собственно, в чем польза АЧХ и зачем авторы TECHLABS с завидным постоянством стараются замерить эту кривую? Дело в том, что по ней можно установить настоящие, а не нашептанные "злым маркетинговым духом" производителю границы частотного диапазона. Принято указывать, при каком падении сигнала граничные частоты все-таки проигрываются. Если не указано, то считается, что были взяты стандартные -3 дБ. Вот здесь и кроется подвох. Достаточно не указать, при каком падении были взяты значения границы, и можно абсолютно честно указывать хоть 20 Гц – 20 кГц, хотя, действительно, эти 20 Гц достижимы при уровне сигнала, который сильно отличается от положенных -3. 

Также польза АЧХ выражается в том, что по ней, хотя и приблизительно, но можно понять, какие проблемы возникнут у выбранной системы. Причем системы в целом. АЧХ страдает от всех элементов тракта. Чтобы понять, как будет звучать система по графику, нужно знать элементы психоакустики. Если коротко, то дело обстоит так: человек разговаривает в пределах средних частот. Поэтому и воспринимает их же лучше всего. И  на соответствующих октавах график должен быть наиболее ровным, так как искажения в этой области сильно давят на уши. Также нежелательно наличие высоких узких пиков. Общее правило здесь такое: пики слышны лучше, чем впадины, и острый пик слышен лучше пологого. Подробнее на этом параметре мы остановимся, когда будем рассматривать процесс его измерения.  

Фазочастотная характеристика (ФЧХ) показывает изменение фазы гармонического сигнала, воспроизводимого АС в зависимости от частоты. Однозначно может быть вычислена из АЧХ с помощью преобразования Гильберта. Идеальная ФЧХ, говорящая, что система не имеет фазочастотных искажений, прямая, проходящая через начало координат. Акустика с такой ФЧХ называется фазолинейной. Долгое время на эту характеристику не обращали внимания, так как существовало мнение о том, что человек не восприимчив к фазочастотным искажениям. Сейчас же измеряют и указывают в паспортах дорогих систем.  

Импульсной характеристикой (импульсным откликом) называют выходной сигнал АС при подаче на вход короткого одиночного импульса. Идеал – если импульсная характеристика повторит импульс на входе без изменений. Часто же до и после импульса на выходе появляются всплески меньшей амплитуды. Такое поведение отклика фильтра говорит о том, что на выходе акустической системы импульс тоже будет порождать паразитные колебания.  

Переходная характеристикавыходной сигнал фильтра, который является реакцией на входной сигнал типа ступенька (сигнал с нуля мгновенно достигает некоторой амплитуды и устанавливается на таком уровне). Такой импульс также может порождать и порождает  паразитные колебания. Естественно, это отразится и на поведении АС, которая воспроизведет и импульс, и паразитные колебания. Характеристика позволяет судить о когерентности системы.  

Кумулятивное затухание спектра (КЗС) – совокупность осевых АЧХ (АЧХ, измеренных на акустической оси системы), полученных с определенным временным промежутком при затухании единичного импульса и отраженных на одном трехмерном графике. Таким образом, по графику КЗС можно точно сказать, какие области спектра с какой скоростью будут затухать после импульса, то есть график позволяет выявлять запаздывающие резонансы АС.  

Если КЗС имеет много резонансов после верхней середины, то такая акустика субъективно будет звучать "грязно", "с песочком на ВЧ" и т.д. 

Импеданс АСэто полное электрическое сопротивление АС, включая сопротивления элементов фильтра (комплексная величина). Это сопротивление содержит в себе не только активное сопротивление, но и реактивные сопротивления емкостей и индуктивностей. Так как реактивное сопротивление зависит от частоты, то и импеданс целиком подчиняется также ей.  

Если говорят об импедансе, как о численной величине, начисто лишенной комплексности, то высказываются о его модуле.  

График импеданса трехмерный (амплитуда-фаза-частота). Обычно рассматриваются его проекции на плоскости амплитуда-частота и фаза-частота. Если объединить эти два графика, то получится график Боде. А проекция амплитуда-фаза – график Найквиста.

Учитывая то, что импеданс зависит от частоты и не постоянен, по нему можно легко определить, какую сложность представляет собой акустика для усилителя. Также по графику можно сказать, какая это акустика (ЗЯ – закрытый ящик), ФИ (с фазоинвертором), как будут воспроизводиться отдельные участки диапазона. 

Чувствительность см. в параметрах Тиля-Смолла. 

Когерентность согласованное протекание нескольких колебательных или волновых процессов во времени. Означает, что сигнал от разных ГГ акустических систем придет к слушателю одновременно, то есть говорит о сохранности фазовой информации.  

Значение комнаты прослушивания

Комната прослушивания (в среде аудиофилов часто сокращают до КдП), да и его условия крайне важны. Некоторые ставят КДП на первое место по важности и уж после нее – акустику, усилитель, источник. Это в некоторой степени оправданно, так как комната способна делать все, что угодно, с измеряемыми микрофоном графиками и параметрами. Могут появляться пики или провалы на АЧХ, которых не было на измерениях в заглушенной комнате. Изменится и ФЧХ (вслед за АЧХ), и переходные характеристики. Для того чтобы уяснить, откуда берутся такие изменения, нужно ввести понятие комнатных мод. 

Комнатные моды – это красиво названные комнатные резонансы. Звук излучается акустической системой во все стороны. Звуковые волны отражаются от всего, что только есть в комнате. В общем случае поведение звука в отдельно взятой комнате для прослушивания (КДП) абсолютно непредсказуемо. Есть, конечно же, расчеты, позволяющие оценить влияние различных мод на звук. Но они существуют для пустой комнаты с идеализированным покрытием. Поэтому приводить здесь их не стоит, они не имеют практической ценности в бытовых условиях.  

Надо, однако, знать, что резонансы и причины их появления напрямую зависят от частоты сигнала. Так, например, низкие частоты возбуждают моды комнаты, которые обусловлены размерами КДП. Гулкость баса (резонанс на 35-100 Гц) – яркий представитель появления резонансов в ответ на сигнал низкой частоты в стандартной комнате 16-20 м2. Высокие частоты порождают несколько иные проблемы: появляются дифракция и интерференция звуковых волн, которые делают характеристику направленности АС частотно-зависимой. То есть направленность АС с ростом частоты становится все более узкой. Из этого следует, что максимальный комфорт получит слушатель на пересечении акустических осей колонок. И только он. Все остальные точки пространства недополучат информации или получат ее искаженной тем или иным образом. 

Влияние комнаты на АС можно значительно уменьшить, если заглушить КДП. Для этого применяются различные звукопоглощающие материалы – от плотных штор и ковров до специальных плит и хитрых конфигураций стен и потолка. Чем глуше помещение, тем больший вклад вносит в звучание именно АС, а не отражения от любимого компьютерного стола и горшка с геранью. 

Рецепты расстановки колонок в комнате 

Фирма Vandersteen рекомендует ставить АС вдоль длинной стены комнаты в точках, где наименьшая вероятность возникновения низкочастотных мод. Нужно начертить план комнаты. На плане поделить длинную стену последовательно на три, пять, семь и девять частей, провести соответствующие линии перпендикулярно этой стене. То же самое проделать и с боковой стеной. Точки пересечения этих линий укажут те места, где возбуждение низких частот в комнате минимальное. 

Фирма NHT рекомендует следующие методы решения распространенных проблем. 

Недостаточность баса, отсутствие плотного и четкого баса: 

  • попробуйте подвинуть АС поближе к задней стене;
  • проверьте, устойчивы ли подставки под АС: при необходимости примените шипы или конусные ножки;
  • проверьте, насколько тверда стена за АС. Если стена хлипкая и "призвучивает", поставьте АС перед мощной (капитальной) стеной. 

Стереокартина не выходит за пределы пространства, ограниченного АС: 

  • подвиньте АС поближе друг к другу. 

Отсутствует глубина звукового пространства. В центре между АС нет четкого звукового образа: 

  • отодвиньте АС подальше друг от друга;
  • подберите оптимальную высоту расположения АС (примените подставки) и вашего положения при прослушивании. 

Резкое раздражающее звучание в области средних и высоких частот: 

  • если АС новые, прогрейте их на музыкальном сигнале в течение нескольких дней;
  • убедитесь, нет ли сильных отражений от боковых стен или от пола перед слушателем.  

Искажения

От субъективизма нужно переходить к техническим понятиям. Начать стоит с искажений. Они делятся на две большие группы: линейные и нелинейные искажения. Линейные искажения не создают новых спектральных составляющих сигнала, изменяют только амплитудные и фазовые составляющие. (Искажают АЧХ и ФЧХ соответственно.) Нелинейные искажения вносят изменения в спектр сигнала. Количество их в сигнале представляется в виде коэффициентов нелинейных искажений и интермодуляционных искажений. 

Коэффициент нелинейных искажений (КНИ, THD – total harmonic distortion) – это показатель, характеризующий степень отличия формы напряжения или тока от идеальной синусоидальной формы. По-русски: на вход подается синусоида. На выходе она сама на себя не похожа, так как тракт вносит изменения в виде дополнительных гармоник. Степень отличия сигнала на входе и на выходе отражается этим коэффициентом.  

Коэффициент интермодуляционных искажений – это проявление амплитудной нелинейности, выраженной в виде модуляционных продуктов, появляющихся при подаче сигнала, состоящих из сигналов с частотами f1 и f2(исходя из рекомендации МЭК 268-5, для измерений берутся частоты f1 и f2, такие, что f1< f2/8. Можно взять и другое соотношение между частотами). Количественно  интермодуляционные искажения оценивают по спектральным компонентам с частотами f2±(n-1)f1, где n=2,3,… На выходе системы сравнивают количество лишних гармоник и оценивают, какой процент спектра они занимают. Результатом сравнения и является коэффициент интермодуляционного искажения. Если измерения проводятся для нескольких n (обычно 2 и 3 достаточно), то итоговый коэффициент интермодуляционных искажений вычисляется из промежуточных (для разных n) путем взятия квадратного корня из суммы их квадратов. 

Мощность

О ней можно говорить очень долго, так как видов измеряемых мощностей динамиков много.  

Несколько аксиом:  

  • громкость не зависит только от мощности. Она зависит также от чувствительности самого динамика. А для акустической системы чувствительность определяется чувствительностью самого большого динамика, так как он и есть самый чувствительный;
  • указанная максимальная мощность не означает, что можно подать ее на систему и колонки будут отлично играть. Все как раз неприятней. Максимальная мощность в течение длительного времени с высокой вероятностью чего-нибудь повредит в динамике. Гарантия производителя! Мощность следует понимать, как недостижимую границу. Только меньше. Не равно и уж тем более – больше;
  • мало того! При максимальной или близкой к ней мощности система будет играть на редкость плохо, потому что искажения вырастут до совершенно неприличных значений.  

Мощность акустической системы бывает электрической и акустической. Акустическую мощность увидеть на коробке с акустикой нереально. Видимо, чтобы не отпугнуть клиента маленькой цифрой. Дело в том, что КПД (коэффициент полезного действия) ГГ (головки громкоговорителя) в очень хорошем случае достигает 1%. Обычное же значение лежит до 0.5%. Таким образом, акустическая мощность системы в идеале может составить одну сотую его электрического потенциала. Все остальное рассеивается в виде тепла, тратится на преодоление упругих и вязких сил динамика.  

Основные виды мощностей, которые можно увидеть на акустике, такие: RMS, PMPO. Это электрические мощности. 

RMS (Root Mean Squared – среднеквадратичное значение) – усредненное значение подводимой электрической мощности. Мощность, измеренная таким образом, имеет смысловую нагрузку. Измеряется подачей синусоиды с частотой 1000 Гц, ограничена сверху заданным значением КНИ (THD). Обязательно необходимо изучить, какой же уровень нелинейных искажений производитель считал допустимым, чтобы не обмануться. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Также на RMS-мощности колонки могут играть длительное время. 

PMPO (Peak Music Power Output – пиковая выходная музыкальная мощность). Какая польза от того, узнает ли человек о том, что его система, возможно, перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят этот параметр. Ведь на пластиковых колоночках размером с детский кулачок может стоять гордая цифра 100 Ватт. Здоровые коробки советских С-90 и рядом не валялись! :) Как ни странно, к реальной PMPO такие цифры имеют очень отдаленное отношение. Эмпирическим путем (исходя из опыта и наблюдений) можно получить приблизительно реальные ватты. Возьмем Genius SPG-06 для примера (PMPO-120 Ватт). Надо PMPO разделить на 10 (12 Ватт) и на 2 (число каналов). На выходе – 6 Ватт, что похоже на реальный показатель. Еще раз: этот метод не научный, а основан на наблюдениях автора. Обычно работает. Реально этот параметр не так и велик, а огромные цифры основаны только на бурной фантазии маркетингового отдела. 

Параметры Тиля-Смолла 

Эти параметры полностью описывают динамик. Есть параметры как конструктивные (площадь, масса подвижной системы), так и неконструктивные (которые следуют из конструктивных). Их всего 15 штук. Для того чтобы примерно представить себе, что за динамик работает в колонке, достаточно четырех из них. 

Резонансная частота динамика Fs (Гц) – частота резонанса динамика, работающего без акустического оформления. Зависит от массы подвижной системы и жесткости подвеса. Важно знать, так как ниже резонансной частоты динамик практически не звучит (уровень звукового давления сильно и резко падает). 

Эквивалентный объем Vas (литры) – полезный объем корпуса, нужный для работы динамика. Зависит только от площади диффузора (Sd) и гибкости подвеса. Важен потому, что, работая, динамик опирается не только на подвес, но и на воздух внутри ящика. Если давление будет не таким, какое нужно, то не видать идеальной работы динамика. 

Полная добротность Qtsсоотношение упругих и вязких сил в подвижной системе динамика вблизи частоты резонанса. Чем выше добротность, тем выше упругость в динамике и тем более охотно он звучит на резонансной частоте. Складывается из механической и электрической добротностей. Механическая – это упругости подвеса и гофра центрирующей шайбы. Как ни привычно, но именно гофр оказывает большую упругость, а не внешние подвесы. Механическая добротность – 10-15% полной добротности. Все остальное – электрическая добротность, образованная магнитом и катушкой динамика. 

Сопротивление постоянному току Re (Ом). Пояснять особо как-то здесь и нечего. Сопротивление обмотки головки постоянному току. 

Механическая добротность Qms – отношение упругих и вязких сил динамика, упругость считается только механических элементов динамика. Складывается из упругости подвеса и гофра центрирующей шайбы.

Электрическая добротность Qes – отношение упругих и вязких сил динамика, упругие силы возникают в электрической части динамика (магнит и катушка). 

Площадь диффузора Sd 2) – меряется, грубо говоря, линейкой. Никакого тайного смысла не имеет. 

Чувствительность SPL (дБ) – уровень звукового давления, развиваемого громкоговорителем. Измеряется на расстоянии 1 метра при подводимой мощности 1 Ватт и частоте 1 кГц (обычно). Чем выше чувствительность, тем громче играет система. В двух- и более полосной системе чувствительность равна SPL самого чувствительного динамика (обычно это басовый лопух). 

Индуктивность Le (Генри) – это индуктивность катушки динамика.  

Импеданс Z (Ом) – комплексная характеристика, которая появляется не на постоянном токе, а на переменном. Дело в том, что в таком случае, реактивные элементы начинают вдруг сопротивляться току. Сопротивление зависит от частоты. Таким образом, импеданс – отношение комплексной амплитуды напряжения и комплексной силы тока на определенной частоте. (Комплексное сопротивление, зависящее от частоты, другими словами). 

Пиковая мощность Pe (Ватт) – это PMPO, которая рассмотрена выше.  

Масса подвижной системы Mms (г) – эффективная масса подвижной системы, которая включает в себя массу диффузора и колеблющегося вместе с ним воздуха. 

Относительная жесткость Cms (метров/ньютон) – гибкость подвижной системы головки громкоговорителя, смещение под воздействием механической нагрузки (например, пальца, который целится потыкать динамик). Чем больше параметр, тем мягче подвес. 

Механическое сопротивление Rms (кг/сек) – активное механическое сопротивление  головки. Все, что может оказать механическое сопротивление в головке, сюда входит. 

Двигательная мощность BLзначение плотности магнитного потока, умноженного на длину провода в катушке. Также этот параметр называется силовым фактором динамика. Можно сказать, что это та мощность, которая будет действовать на диффузор со стороны магнита. 

Все перечисленные параметры тесно взаимосвязаны. Это довольно очевидно из определений. Вот основные зависимости: 

  • Fs растет при увеличении жесткости подвеса и падает с увеличением массы подвижной системы;
  • Vas уменьшается при увеличении жесткости подвеса и растет с увеличением площади диффузора;
  • Qts растет при увеличении жесткости подвеса и массы подвижной системы и падает при увеличении мощности BL

Итак, теперь вы знакомы с базовым теоретическим аппаратом, необходимым для понимания статей по акустическим системам. Перейдем же непосредственно к методике тестирования, которой пользуются авторы нашего портала.  

|| Комментарии на форуме 0
Оставить комментарий